Solve for x, y
x=-48
y=87
Graph
Share
Copied to clipboard
x+y=39,x+2y=126
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=39
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+39
Subtract y from both sides of the equation.
-y+39+2y=126
Substitute -y+39 for x in the other equation, x+2y=126.
y+39=126
Add -y to 2y.
y=87
Subtract 39 from both sides of the equation.
x=-87+39
Substitute 87 for y in x=-y+39. Because the resulting equation contains only one variable, you can solve for x directly.
x=-48
Add 39 to -87.
x=-48,y=87
The system is now solved.
x+y=39,x+2y=126
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\126\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 39-126\\-39+126\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-48\\87\end{matrix}\right)
Do the arithmetic.
x=-48,y=87
Extract the matrix elements x and y.
x+y=39,x+2y=126
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y-2y=39-126
Subtract x+2y=126 from x+y=39 by subtracting like terms on each side of the equal sign.
y-2y=39-126
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-y=39-126
Add y to -2y.
-y=-87
Add 39 to -126.
y=87
Divide both sides by -1.
x+2\times 87=126
Substitute 87 for y in x+2y=126. Because the resulting equation contains only one variable, you can solve for x directly.
x+174=126
Multiply 2 times 87.
x=-48
Subtract 174 from both sides of the equation.
x=-48,y=87
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}