Solve for x, y
x=24
y=14
Graph
Share
Copied to clipboard
x+y=38,5x+10y=260
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=38
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+38
Subtract y from both sides of the equation.
5\left(-y+38\right)+10y=260
Substitute -y+38 for x in the other equation, 5x+10y=260.
-5y+190+10y=260
Multiply 5 times -y+38.
5y+190=260
Add -5y to 10y.
5y=70
Subtract 190 from both sides of the equation.
y=14
Divide both sides by 5.
x=-14+38
Substitute 14 for y in x=-y+38. Because the resulting equation contains only one variable, you can solve for x directly.
x=24
Add 38 to -14.
x=24,y=14
The system is now solved.
x+y=38,5x+10y=260
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\5&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}38\\260\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}1&1\\5&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}38\\260\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\5&10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}38\\260\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}38\\260\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10-5}&-\frac{1}{10-5}\\-\frac{5}{10-5}&\frac{1}{10-5}\end{matrix}\right)\left(\begin{matrix}38\\260\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{5}\\-1&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}38\\260\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 38-\frac{1}{5}\times 260\\-38+\frac{1}{5}\times 260\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\14\end{matrix}\right)
Do the arithmetic.
x=24,y=14
Extract the matrix elements x and y.
x+y=38,5x+10y=260
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x+5y=5\times 38,5x+10y=260
To make x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 1.
5x+5y=190,5x+10y=260
Simplify.
5x-5x+5y-10y=190-260
Subtract 5x+10y=260 from 5x+5y=190 by subtracting like terms on each side of the equal sign.
5y-10y=190-260
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
-5y=190-260
Add 5y to -10y.
-5y=-70
Add 190 to -260.
y=14
Divide both sides by -5.
5x+10\times 14=260
Substitute 14 for y in 5x+10y=260. Because the resulting equation contains only one variable, you can solve for x directly.
5x+140=260
Multiply 10 times 14.
5x=120
Subtract 140 from both sides of the equation.
x=24
Divide both sides by 5.
x=24,y=14
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}