Solve for x, y
x=100
y=200
Graph
Share
Copied to clipboard
2x-y=0
Consider the second equation. Subtract y from both sides.
x+y=300,2x-y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=300
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+300
Subtract y from both sides of the equation.
2\left(-y+300\right)-y=0
Substitute -y+300 for x in the other equation, 2x-y=0.
-2y+600-y=0
Multiply 2 times -y+300.
-3y+600=0
Add -2y to -y.
-3y=-600
Subtract 600 from both sides of the equation.
y=200
Divide both sides by -3.
x=-200+300
Substitute 200 for y in x=-y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=100
Add 300 to -200.
x=100,y=200
The system is now solved.
2x-y=0
Consider the second equation. Subtract y from both sides.
x+y=300,2x-y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}300\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}300\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}300\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}300\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}300\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 300\\\frac{2}{3}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\200\end{matrix}\right)
Do the arithmetic.
x=100,y=200
Extract the matrix elements x and y.
2x-y=0
Consider the second equation. Subtract y from both sides.
x+y=300,2x-y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2y=2\times 300,2x-y=0
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+2y=600,2x-y=0
Simplify.
2x-2x+2y+y=600
Subtract 2x-y=0 from 2x+2y=600 by subtracting like terms on each side of the equal sign.
2y+y=600
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
3y=600
Add 2y to y.
y=200
Divide both sides by 3.
2x-200=0
Substitute 200 for y in 2x-y=0. Because the resulting equation contains only one variable, you can solve for x directly.
2x=200
Add 200 to both sides of the equation.
x=100
Divide both sides by 2.
x=100,y=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}