Solve for x, y
x=100
y=200
Graph
Share
Copied to clipboard
x+y=300,x+0.75y=250
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=300
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+300
Subtract y from both sides of the equation.
-y+300+0.75y=250
Substitute -y+300 for x in the other equation, x+0.75y=250.
-0.25y+300=250
Add -y to \frac{3y}{4}.
-0.25y=-50
Subtract 300 from both sides of the equation.
y=200
Multiply both sides by -4.
x=-200+300
Substitute 200 for y in x=-y+300. Because the resulting equation contains only one variable, you can solve for x directly.
x=100
Add 300 to -200.
x=100,y=200
The system is now solved.
x+y=300,x+0.75y=250
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&0.75\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\250\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&0.75\end{matrix}\right))\left(\begin{matrix}1&1\\1&0.75\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&0.75\end{matrix}\right))\left(\begin{matrix}300\\250\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&0.75\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&0.75\end{matrix}\right))\left(\begin{matrix}300\\250\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&0.75\end{matrix}\right))\left(\begin{matrix}300\\250\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.75}{0.75-1}&-\frac{1}{0.75-1}\\-\frac{1}{0.75-1}&\frac{1}{0.75-1}\end{matrix}\right)\left(\begin{matrix}300\\250\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\4&-4\end{matrix}\right)\left(\begin{matrix}300\\250\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 300+4\times 250\\4\times 300-4\times 250\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\200\end{matrix}\right)
Do the arithmetic.
x=100,y=200
Extract the matrix elements x and y.
x+y=300,x+0.75y=250
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y-0.75y=300-250
Subtract x+0.75y=250 from x+y=300 by subtracting like terms on each side of the equal sign.
y-0.75y=300-250
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
0.25y=300-250
Add y to -\frac{3y}{4}.
0.25y=50
Add 300 to -250.
y=200
Multiply both sides by 4.
x+0.75\times 200=250
Substitute 200 for y in x+0.75y=250. Because the resulting equation contains only one variable, you can solve for x directly.
x+150=250
Multiply 0.75 times 200.
x=100
Subtract 150 from both sides of the equation.
x=100,y=200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}