Solve for x, y
x=\frac{4\sqrt{3}}{3}-1\approx 1.309401077\text{, }y=-\frac{4\sqrt{3}}{3}+4\approx 1.690598923
x=-\frac{4\sqrt{3}}{3}-1\approx -3.309401077\text{, }y=\frac{4\sqrt{3}}{3}+4\approx 6.309401077
Graph
Share
Copied to clipboard
x+y=3,-y^{2}+4x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=3
Solve x+y=3 for x by isolating x on the left hand side of the equal sign.
x=-y+3
Subtract y from both sides of the equation.
-y^{2}+4\left(-y+3\right)^{2}=4
Substitute -y+3 for x in the other equation, -y^{2}+4x^{2}=4.
-y^{2}+4\left(y^{2}-6y+9\right)=4
Square -y+3.
-y^{2}+4y^{2}-24y+36=4
Multiply 4 times y^{2}-6y+9.
3y^{2}-24y+36=4
Add -y^{2} to 4y^{2}.
3y^{2}-24y+32=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 3\times 32}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1+4\left(-1\right)^{2} for a, 4\times 3\left(-1\right)\times 2 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-24\right)±\sqrt{576-4\times 3\times 32}}{2\times 3}
Square 4\times 3\left(-1\right)\times 2.
y=\frac{-\left(-24\right)±\sqrt{576-12\times 32}}{2\times 3}
Multiply -4 times -1+4\left(-1\right)^{2}.
y=\frac{-\left(-24\right)±\sqrt{576-384}}{2\times 3}
Multiply -12 times 32.
y=\frac{-\left(-24\right)±\sqrt{192}}{2\times 3}
Add 576 to -384.
y=\frac{-\left(-24\right)±8\sqrt{3}}{2\times 3}
Take the square root of 192.
y=\frac{24±8\sqrt{3}}{2\times 3}
The opposite of 4\times 3\left(-1\right)\times 2 is 24.
y=\frac{24±8\sqrt{3}}{6}
Multiply 2 times -1+4\left(-1\right)^{2}.
y=\frac{8\sqrt{3}+24}{6}
Now solve the equation y=\frac{24±8\sqrt{3}}{6} when ± is plus. Add 24 to 8\sqrt{3}.
y=\frac{4\sqrt{3}}{3}+4
Divide 24+8\sqrt{3} by 6.
y=\frac{24-8\sqrt{3}}{6}
Now solve the equation y=\frac{24±8\sqrt{3}}{6} when ± is minus. Subtract 8\sqrt{3} from 24.
y=-\frac{4\sqrt{3}}{3}+4
Divide 24-8\sqrt{3} by 6.
x=-\left(\frac{4\sqrt{3}}{3}+4\right)+3
There are two solutions for y: 4+\frac{4\sqrt{3}}{3} and 4-\frac{4\sqrt{3}}{3}. Substitute 4+\frac{4\sqrt{3}}{3} for y in the equation x=-y+3 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\frac{4\sqrt{3}}{3}+4\right)+3
Now substitute 4-\frac{4\sqrt{3}}{3} for y in the equation x=-y+3 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\frac{4\sqrt{3}}{3}+4\right)+3,y=\frac{4\sqrt{3}}{3}+4\text{ or }x=-\left(-\frac{4\sqrt{3}}{3}+4\right)+3,y=-\frac{4\sqrt{3}}{3}+4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}