Solve for x, y
x = \frac{252}{11} = 22\frac{10}{11} \approx 22.909090909
y = \frac{56}{11} = 5\frac{1}{11} \approx 5.090909091
Graph
Share
Copied to clipboard
4x=18y
Consider the second equation. Combine 2x and 2x to get 4x.
4x-18y=0
Subtract 18y from both sides.
x+y=28,4x-18y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=28
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+28
Subtract y from both sides of the equation.
4\left(-y+28\right)-18y=0
Substitute -y+28 for x in the other equation, 4x-18y=0.
-4y+112-18y=0
Multiply 4 times -y+28.
-22y+112=0
Add -4y to -18y.
-22y=-112
Subtract 112 from both sides of the equation.
y=\frac{56}{11}
Divide both sides by -22.
x=-\frac{56}{11}+28
Substitute \frac{56}{11} for y in x=-y+28. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{252}{11}
Add 28 to -\frac{56}{11}.
x=\frac{252}{11},y=\frac{56}{11}
The system is now solved.
4x=18y
Consider the second equation. Combine 2x and 2x to get 4x.
4x-18y=0
Subtract 18y from both sides.
x+y=28,4x-18y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&-18\end{matrix}\right))\left(\begin{matrix}1&1\\4&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-18\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-18\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&-18\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-4}&-\frac{1}{-18-4}\\-\frac{4}{-18-4}&\frac{1}{-18-4}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{11}&\frac{1}{22}\\\frac{2}{11}&-\frac{1}{22}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{11}\times 28\\\frac{2}{11}\times 28\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{252}{11}\\\frac{56}{11}\end{matrix}\right)
Do the arithmetic.
x=\frac{252}{11},y=\frac{56}{11}
Extract the matrix elements x and y.
4x=18y
Consider the second equation. Combine 2x and 2x to get 4x.
4x-18y=0
Subtract 18y from both sides.
x+y=28,4x-18y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 28,4x-18y=0
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=112,4x-18y=0
Simplify.
4x-4x+4y+18y=112
Subtract 4x-18y=0 from 4x+4y=112 by subtracting like terms on each side of the equal sign.
4y+18y=112
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
22y=112
Add 4y to 18y.
y=\frac{56}{11}
Divide both sides by 22.
4x-18\times \frac{56}{11}=0
Substitute \frac{56}{11} for y in 4x-18y=0. Because the resulting equation contains only one variable, you can solve for x directly.
4x-\frac{1008}{11}=0
Multiply -18 times \frac{56}{11}.
4x=\frac{1008}{11}
Add \frac{1008}{11} to both sides of the equation.
x=\frac{252}{11}
Divide both sides by 4.
x=\frac{252}{11},y=\frac{56}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}