Solve for x, y
x=80
y=160
Graph
Share
Copied to clipboard
x+y=240,0.12x+0.06y=19.2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=240
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+240
Subtract y from both sides of the equation.
0.12\left(-y+240\right)+0.06y=19.2
Substitute -y+240 for x in the other equation, 0.12x+0.06y=19.2.
-0.12y+28.8+0.06y=19.2
Multiply 0.12 times -y+240.
-0.06y+28.8=19.2
Add -\frac{3y}{25} to \frac{3y}{50}.
-0.06y=-9.6
Subtract 28.8 from both sides of the equation.
y=160
Divide both sides of the equation by -0.06, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-160+240
Substitute 160 for y in x=-y+240. Because the resulting equation contains only one variable, you can solve for x directly.
x=80
Add 240 to -160.
x=80,y=160
The system is now solved.
x+y=240,0.12x+0.06y=19.2
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\19.2\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}240\\19.2\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}240\\19.2\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}240\\19.2\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.06}{0.06-0.12}&-\frac{1}{0.06-0.12}\\-\frac{0.12}{0.06-0.12}&\frac{1}{0.06-0.12}\end{matrix}\right)\left(\begin{matrix}240\\19.2\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{50}{3}\\2&-\frac{50}{3}\end{matrix}\right)\left(\begin{matrix}240\\19.2\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-240+\frac{50}{3}\times 19.2\\2\times 240-\frac{50}{3}\times 19.2\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\160\end{matrix}\right)
Do the arithmetic.
x=80,y=160
Extract the matrix elements x and y.
x+y=240,0.12x+0.06y=19.2
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.12x+0.12y=0.12\times 240,0.12x+0.06y=19.2
To make x and \frac{3x}{25} equal, multiply all terms on each side of the first equation by 0.12 and all terms on each side of the second by 1.
0.12x+0.12y=28.8,0.12x+0.06y=19.2
Simplify.
0.12x-0.12x+0.12y-0.06y=\frac{144-96}{5}
Subtract 0.12x+0.06y=19.2 from 0.12x+0.12y=28.8 by subtracting like terms on each side of the equal sign.
0.12y-0.06y=\frac{144-96}{5}
Add \frac{3x}{25} to -\frac{3x}{25}. Terms \frac{3x}{25} and -\frac{3x}{25} cancel out, leaving an equation with only one variable that can be solved.
0.06y=\frac{144-96}{5}
Add \frac{3y}{25} to -\frac{3y}{50}.
0.06y=9.6
Add 28.8 to -19.2 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=160
Divide both sides of the equation by 0.06, which is the same as multiplying both sides by the reciprocal of the fraction.
0.12x+0.06\times 160=19.2
Substitute 160 for y in 0.12x+0.06y=19.2. Because the resulting equation contains only one variable, you can solve for x directly.
0.12x+9.6=19.2
Multiply 0.06 times 160.
0.12x=9.6
Subtract 9.6 from both sides of the equation.
x=80
Divide both sides of the equation by 0.12, which is the same as multiplying both sides by the reciprocal of the fraction.
x=80,y=160
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}