Solve for x, y
x=310
y=-290
Graph
Share
Copied to clipboard
x+y=20,x-y=600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+20
Subtract y from both sides of the equation.
-y+20-y=600
Substitute -y+20 for x in the other equation, x-y=600.
-2y+20=600
Add -y to -y.
-2y=580
Subtract 20 from both sides of the equation.
y=-290
Divide both sides by -2.
x=-\left(-290\right)+20
Substitute -290 for y in x=-y+20. Because the resulting equation contains only one variable, you can solve for x directly.
x=290+20
Multiply -1 times -290.
x=310
Add 20 to 290.
x=310,y=-290
The system is now solved.
x+y=20,x-y=600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}20\\600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}20\\600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}20\\600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}20\\600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}20\\600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 20+\frac{1}{2}\times 600\\\frac{1}{2}\times 20-\frac{1}{2}\times 600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}310\\-290\end{matrix}\right)
Do the arithmetic.
x=310,y=-290
Extract the matrix elements x and y.
x+y=20,x-y=600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y+y=20-600
Subtract x-y=600 from x+y=20 by subtracting like terms on each side of the equal sign.
y+y=20-600
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
2y=20-600
Add y to y.
2y=-580
Add 20 to -600.
y=-290
Divide both sides by 2.
x-\left(-290\right)=600
Substitute -290 for y in x-y=600. Because the resulting equation contains only one variable, you can solve for x directly.
x+290=600
Multiply -1 times -290.
x=310
Subtract 290 from both sides of the equation.
x=310,y=-290
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}