Solve for x, y, z
x = \frac{51}{7} = 7\frac{2}{7} \approx 7.285714286
y = -\frac{152}{7} = -21\frac{5}{7} \approx -21.714285714
z = -\frac{101}{14} = -7\frac{3}{14} \approx -7.214285714
Share
Copied to clipboard
x=\frac{51}{7}
Consider the third equation. Divide both sides by 7.
\frac{51}{7}-y=29
Consider the second equation. Insert the known values of variables into the equation.
-y=29-\frac{51}{7}
Subtract \frac{51}{7} from both sides.
-y=\frac{152}{7}
Subtract \frac{51}{7} from 29 to get \frac{152}{7}.
y=\frac{\frac{152}{7}}{-1}
Divide both sides by -1.
y=\frac{152}{7\left(-1\right)}
Express \frac{\frac{152}{7}}{-1} as a single fraction.
y=\frac{152}{-7}
Multiply 7 and -1 to get -7.
y=-\frac{152}{7}
Fraction \frac{152}{-7} can be rewritten as -\frac{152}{7} by extracting the negative sign.
\frac{51}{7}-\frac{152}{7}=2z
Consider the first equation. Insert the known values of variables into the equation.
-\frac{101}{7}=2z
Subtract \frac{152}{7} from \frac{51}{7} to get -\frac{101}{7}.
2z=-\frac{101}{7}
Swap sides so that all variable terms are on the left hand side.
z=\frac{-\frac{101}{7}}{2}
Divide both sides by 2.
z=\frac{-101}{7\times 2}
Express \frac{-\frac{101}{7}}{2} as a single fraction.
z=\frac{-101}{14}
Multiply 7 and 2 to get 14.
z=-\frac{101}{14}
Fraction \frac{-101}{14} can be rewritten as -\frac{101}{14} by extracting the negative sign.
x=\frac{51}{7} y=-\frac{152}{7} z=-\frac{101}{14}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}