Solve for x, y
x = \frac{334}{3} = 111\frac{1}{3} \approx 111.333333333
y = \frac{334}{3} = 111\frac{1}{3} \approx 111.333333333
Graph
Share
Copied to clipboard
x+y-2x=0
Consider the first equation. Subtract 2x from both sides.
-x+y=0
Combine x and -2x to get -x.
-x+y=0,4x+2y=668
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-x+y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-x=-y
Subtract y from both sides of the equation.
x=-\left(-1\right)y
Divide both sides by -1.
x=y
Multiply -1 times -y.
4y+2y=668
Substitute y for x in the other equation, 4x+2y=668.
6y=668
Add 4y to 2y.
y=\frac{334}{3}
Divide both sides by 6.
x=\frac{334}{3}
Substitute \frac{334}{3} for y in x=y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{334}{3},y=\frac{334}{3}
The system is now solved.
x+y-2x=0
Consider the first equation. Subtract 2x from both sides.
-x+y=0
Combine x and -2x to get -x.
-x+y=0,4x+2y=668
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\668\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-1&1\\4&2\end{matrix}\right))\left(\begin{matrix}-1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\4&2\end{matrix}\right))\left(\begin{matrix}0\\668\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\4&2\end{matrix}\right))\left(\begin{matrix}0\\668\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\4&2\end{matrix}\right))\left(\begin{matrix}0\\668\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-4}&-\frac{1}{-2-4}\\-\frac{4}{-2-4}&-\frac{1}{-2-4}\end{matrix}\right)\left(\begin{matrix}0\\668\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{6}\\\frac{2}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}0\\668\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 668\\\frac{1}{6}\times 668\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{334}{3}\\\frac{334}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{334}{3},y=\frac{334}{3}
Extract the matrix elements x and y.
x+y-2x=0
Consider the first equation. Subtract 2x from both sides.
-x+y=0
Combine x and -2x to get -x.
-x+y=0,4x+2y=668
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\left(-1\right)x+4y=0,-4x-2y=-668
To make -x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by -1.
-4x+4y=0,-4x-2y=-668
Simplify.
-4x+4x+4y+2y=668
Subtract -4x-2y=-668 from -4x+4y=0 by subtracting like terms on each side of the equal sign.
4y+2y=668
Add -4x to 4x. Terms -4x and 4x cancel out, leaving an equation with only one variable that can be solved.
6y=668
Add 4y to 2y.
y=\frac{334}{3}
Divide both sides by 6.
4x+2\times \frac{334}{3}=668
Substitute \frac{334}{3} for y in 4x+2y=668. Because the resulting equation contains only one variable, you can solve for x directly.
4x+\frac{668}{3}=668
Multiply 2 times \frac{334}{3}.
4x=\frac{1336}{3}
Subtract \frac{668}{3} from both sides of the equation.
x=\frac{334}{3}
Divide both sides by 4.
x=\frac{334}{3},y=\frac{334}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}