Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=15,0.8x+0.6y=104
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=15
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+15
Subtract y from both sides of the equation.
0.8\left(-y+15\right)+0.6y=104
Substitute -y+15 for x in the other equation, 0.8x+0.6y=104.
-0.8y+12+0.6y=104
Multiply 0.8 times -y+15.
-0.2y+12=104
Add -\frac{4y}{5} to \frac{3y}{5}.
-0.2y=92
Subtract 12 from both sides of the equation.
y=-460
Multiply both sides by -5.
x=-\left(-460\right)+15
Substitute -460 for y in x=-y+15. Because the resulting equation contains only one variable, you can solve for x directly.
x=460+15
Multiply -1 times -460.
x=475
Add 15 to 460.
x=475,y=-460
The system is now solved.
x+y=15,0.8x+0.6y=104
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\104\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right))\left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right))\left(\begin{matrix}15\\104\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right))\left(\begin{matrix}15\\104\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.8&0.6\end{matrix}\right))\left(\begin{matrix}15\\104\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.6}{0.6-0.8}&-\frac{1}{0.6-0.8}\\-\frac{0.8}{0.6-0.8}&\frac{1}{0.6-0.8}\end{matrix}\right)\left(\begin{matrix}15\\104\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&5\\4&-5\end{matrix}\right)\left(\begin{matrix}15\\104\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 15+5\times 104\\4\times 15-5\times 104\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}475\\-460\end{matrix}\right)
Do the arithmetic.
x=475,y=-460
Extract the matrix elements x and y.
x+y=15,0.8x+0.6y=104
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.8x+0.8y=0.8\times 15,0.8x+0.6y=104
To make x and \frac{4x}{5} equal, multiply all terms on each side of the first equation by 0.8 and all terms on each side of the second by 1.
0.8x+0.8y=12,0.8x+0.6y=104
Simplify.
0.8x-0.8x+0.8y-0.6y=12-104
Subtract 0.8x+0.6y=104 from 0.8x+0.8y=12 by subtracting like terms on each side of the equal sign.
0.8y-0.6y=12-104
Add \frac{4x}{5} to -\frac{4x}{5}. Terms \frac{4x}{5} and -\frac{4x}{5} cancel out, leaving an equation with only one variable that can be solved.
0.2y=12-104
Add \frac{4y}{5} to -\frac{3y}{5}.
0.2y=-92
Add 12 to -104.
y=-460
Multiply both sides by 5.
0.8x+0.6\left(-460\right)=104
Substitute -460 for y in 0.8x+0.6y=104. Because the resulting equation contains only one variable, you can solve for x directly.
0.8x-276=104
Multiply 0.6 times -460.
0.8x=380
Add 276 to both sides of the equation.
x=475
Divide both sides of the equation by 0.8, which is the same as multiplying both sides by the reciprocal of the fraction.
x=475,y=-460
The system is now solved.