Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=14.5,70x+100y=2035
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=14.5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+14.5
Subtract y from both sides of the equation.
70\left(-y+14.5\right)+100y=2035
Substitute -y+14.5 for x in the other equation, 70x+100y=2035.
-70y+1015+100y=2035
Multiply 70 times -y+14.5.
30y+1015=2035
Add -70y to 100y.
30y=1020
Subtract 1015 from both sides of the equation.
y=34
Divide both sides by 30.
x=-34+14.5
Substitute 34 for y in x=-y+14.5. Because the resulting equation contains only one variable, you can solve for x directly.
x=-19.5
Add 14.5 to -34.
x=-19.5,y=34
The system is now solved.
x+y=14.5,70x+100y=2035
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\70&100\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14.5\\2035\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\70&100\end{matrix}\right))\left(\begin{matrix}1&1\\70&100\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\70&100\end{matrix}\right))\left(\begin{matrix}14.5\\2035\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\70&100\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\70&100\end{matrix}\right))\left(\begin{matrix}14.5\\2035\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\70&100\end{matrix}\right))\left(\begin{matrix}14.5\\2035\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{100-70}&-\frac{1}{100-70}\\-\frac{70}{100-70}&\frac{1}{100-70}\end{matrix}\right)\left(\begin{matrix}14.5\\2035\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3}&-\frac{1}{30}\\-\frac{7}{3}&\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}14.5\\2035\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{3}\times 14.5-\frac{1}{30}\times 2035\\-\frac{7}{3}\times 14.5+\frac{1}{30}\times 2035\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{39}{2}\\34\end{matrix}\right)
Do the arithmetic.
x=-\frac{39}{2},y=34
Extract the matrix elements x and y.
x+y=14.5,70x+100y=2035
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
70x+70y=70\times 14.5,70x+100y=2035
To make x and 70x equal, multiply all terms on each side of the first equation by 70 and all terms on each side of the second by 1.
70x+70y=1015,70x+100y=2035
Simplify.
70x-70x+70y-100y=1015-2035
Subtract 70x+100y=2035 from 70x+70y=1015 by subtracting like terms on each side of the equal sign.
70y-100y=1015-2035
Add 70x to -70x. Terms 70x and -70x cancel out, leaving an equation with only one variable that can be solved.
-30y=1015-2035
Add 70y to -100y.
-30y=-1020
Add 1015 to -2035.
y=34
Divide both sides by -30.
70x+100\times 34=2035
Substitute 34 for y in 70x+100y=2035. Because the resulting equation contains only one variable, you can solve for x directly.
70x+3400=2035
Multiply 100 times 34.
70x=-1365
Subtract 3400 from both sides of the equation.
x=-\frac{39}{2}
Divide both sides by 70.
x=-\frac{39}{2},y=34
The system is now solved.