Solve for x, y
x=85
y=45
Graph
Share
Copied to clipboard
x+y=130,20x+5y=1925
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=130
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+130
Subtract y from both sides of the equation.
20\left(-y+130\right)+5y=1925
Substitute -y+130 for x in the other equation, 20x+5y=1925.
-20y+2600+5y=1925
Multiply 20 times -y+130.
-15y+2600=1925
Add -20y to 5y.
-15y=-675
Subtract 2600 from both sides of the equation.
y=45
Divide both sides by -15.
x=-45+130
Substitute 45 for y in x=-y+130. Because the resulting equation contains only one variable, you can solve for x directly.
x=85
Add 130 to -45.
x=85,y=45
The system is now solved.
x+y=130,20x+5y=1925
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\20&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130\\1925\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\20&5\end{matrix}\right))\left(\begin{matrix}1&1\\20&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&5\end{matrix}\right))\left(\begin{matrix}130\\1925\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\20&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&5\end{matrix}\right))\left(\begin{matrix}130\\1925\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&5\end{matrix}\right))\left(\begin{matrix}130\\1925\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-20}&-\frac{1}{5-20}\\-\frac{20}{5-20}&\frac{1}{5-20}\end{matrix}\right)\left(\begin{matrix}130\\1925\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{15}\\\frac{4}{3}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}130\\1925\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 130+\frac{1}{15}\times 1925\\\frac{4}{3}\times 130-\frac{1}{15}\times 1925\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}85\\45\end{matrix}\right)
Do the arithmetic.
x=85,y=45
Extract the matrix elements x and y.
x+y=130,20x+5y=1925
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20x+20y=20\times 130,20x+5y=1925
To make x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 1.
20x+20y=2600,20x+5y=1925
Simplify.
20x-20x+20y-5y=2600-1925
Subtract 20x+5y=1925 from 20x+20y=2600 by subtracting like terms on each side of the equal sign.
20y-5y=2600-1925
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
15y=2600-1925
Add 20y to -5y.
15y=675
Add 2600 to -1925.
y=45
Divide both sides by 15.
20x+5\times 45=1925
Substitute 45 for y in 20x+5y=1925. Because the resulting equation contains only one variable, you can solve for x directly.
20x+225=1925
Multiply 5 times 45.
20x=1700
Subtract 225 from both sides of the equation.
x=85
Divide both sides by 20.
x=85,y=45
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}