Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=1000,\frac{5}{6}x+\frac{1}{2}y=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1000
Subtract y from both sides of the equation.
\frac{5}{6}\left(-y+1000\right)+\frac{1}{2}y=300
Substitute -y+1000 for x in the other equation, \frac{5}{6}x+\frac{1}{2}y=300.
-\frac{5}{6}y+\frac{2500}{3}+\frac{1}{2}y=300
Multiply \frac{5}{6} times -y+1000.
-\frac{1}{3}y+\frac{2500}{3}=300
Add -\frac{5y}{6} to \frac{y}{2}.
-\frac{1}{3}y=-\frac{1600}{3}
Subtract \frac{2500}{3} from both sides of the equation.
y=1600
Multiply both sides by -3.
x=-1600+1000
Substitute 1600 for y in x=-y+1000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-600
Add 1000 to -1600.
x=-600,y=1600
The system is now solved.
x+y=1000,\frac{5}{6}x+\frac{1}{2}y=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1000\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1000\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{5}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1000\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-\frac{5}{6}}&-\frac{1}{\frac{1}{2}-\frac{5}{6}}\\-\frac{\frac{5}{6}}{\frac{1}{2}-\frac{5}{6}}&\frac{1}{\frac{1}{2}-\frac{5}{6}}\end{matrix}\right)\left(\begin{matrix}1000\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}&3\\\frac{5}{2}&-3\end{matrix}\right)\left(\begin{matrix}1000\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\times 1000+3\times 300\\\frac{5}{2}\times 1000-3\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-600\\1600\end{matrix}\right)
Do the arithmetic.
x=-600,y=1600
Extract the matrix elements x and y.
x+y=1000,\frac{5}{6}x+\frac{1}{2}y=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{5}{6}x+\frac{5}{6}y=\frac{5}{6}\times 1000,\frac{5}{6}x+\frac{1}{2}y=300
To make x and \frac{5x}{6} equal, multiply all terms on each side of the first equation by \frac{5}{6} and all terms on each side of the second by 1.
\frac{5}{6}x+\frac{5}{6}y=\frac{2500}{3},\frac{5}{6}x+\frac{1}{2}y=300
Simplify.
\frac{5}{6}x-\frac{5}{6}x+\frac{5}{6}y-\frac{1}{2}y=\frac{2500}{3}-300
Subtract \frac{5}{6}x+\frac{1}{2}y=300 from \frac{5}{6}x+\frac{5}{6}y=\frac{2500}{3} by subtracting like terms on each side of the equal sign.
\frac{5}{6}y-\frac{1}{2}y=\frac{2500}{3}-300
Add \frac{5x}{6} to -\frac{5x}{6}. Terms \frac{5x}{6} and -\frac{5x}{6} cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{3}y=\frac{2500}{3}-300
Add \frac{5y}{6} to -\frac{y}{2}.
\frac{1}{3}y=\frac{1600}{3}
Add \frac{2500}{3} to -300.
y=1600
Multiply both sides by 3.
\frac{5}{6}x+\frac{1}{2}\times 1600=300
Substitute 1600 for y in \frac{5}{6}x+\frac{1}{2}y=300. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{5}{6}x+800=300
Multiply \frac{1}{2} times 1600.
\frac{5}{6}x=-500
Subtract 800 from both sides of the equation.
x=-600
Divide both sides of the equation by \frac{5}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-600,y=1600
The system is now solved.