Solve for x, y
x=637
y=-537
Graph
Share
Copied to clipboard
x+y=100,60x+70y=630
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+100
Subtract y from both sides of the equation.
60\left(-y+100\right)+70y=630
Substitute -y+100 for x in the other equation, 60x+70y=630.
-60y+6000+70y=630
Multiply 60 times -y+100.
10y+6000=630
Add -60y to 70y.
10y=-5370
Subtract 6000 from both sides of the equation.
y=-537
Divide both sides by 10.
x=-\left(-537\right)+100
Substitute -537 for y in x=-y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=537+100
Multiply -1 times -537.
x=637
Add 100 to 537.
x=637,y=-537
The system is now solved.
x+y=100,60x+70y=630
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\60&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\630\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}1&1\\60&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\630\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\60&70\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\630\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\630\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{70}{70-60}&-\frac{1}{70-60}\\-\frac{60}{70-60}&\frac{1}{70-60}\end{matrix}\right)\left(\begin{matrix}100\\630\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7&-\frac{1}{10}\\-6&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}100\\630\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\times 100-\frac{1}{10}\times 630\\-6\times 100+\frac{1}{10}\times 630\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}637\\-537\end{matrix}\right)
Do the arithmetic.
x=637,y=-537
Extract the matrix elements x and y.
x+y=100,60x+70y=630
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60x+60y=60\times 100,60x+70y=630
To make x and 60x equal, multiply all terms on each side of the first equation by 60 and all terms on each side of the second by 1.
60x+60y=6000,60x+70y=630
Simplify.
60x-60x+60y-70y=6000-630
Subtract 60x+70y=630 from 60x+60y=6000 by subtracting like terms on each side of the equal sign.
60y-70y=6000-630
Add 60x to -60x. Terms 60x and -60x cancel out, leaving an equation with only one variable that can be solved.
-10y=6000-630
Add 60y to -70y.
-10y=5370
Add 6000 to -630.
y=-537
Divide both sides by -10.
60x+70\left(-537\right)=630
Substitute -537 for y in 60x+70y=630. Because the resulting equation contains only one variable, you can solve for x directly.
60x-37590=630
Multiply 70 times -537.
60x=38220
Add 37590 to both sides of the equation.
x=637
Divide both sides by 60.
x=637,y=-537
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}