Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+10=y
Consider the second equation. Cancel out 2 on both sides.
x+10-y=0
Subtract y from both sides.
x-y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x+y=100,x-y=-10
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+100
Subtract y from both sides of the equation.
-y+100-y=-10
Substitute -y+100 for x in the other equation, x-y=-10.
-2y+100=-10
Add -y to -y.
-2y=-110
Subtract 100 from both sides of the equation.
y=55
Divide both sides by -2.
x=-55+100
Substitute 55 for y in x=-y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=45
Add 100 to -55.
x=45,y=55
The system is now solved.
x+10=y
Consider the second equation. Cancel out 2 on both sides.
x+10-y=0
Subtract y from both sides.
x-y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x+y=100,x-y=-10
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\-10\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}100\\-10\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}100\\-10\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}100\\-10\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}100\\-10\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}100\\-10\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 100+\frac{1}{2}\left(-10\right)\\\frac{1}{2}\times 100-\frac{1}{2}\left(-10\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\55\end{matrix}\right)
Do the arithmetic.
x=45,y=55
Extract the matrix elements x and y.
x+10=y
Consider the second equation. Cancel out 2 on both sides.
x+10-y=0
Subtract y from both sides.
x-y=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
x+y=100,x-y=-10
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+y+y=100+10
Subtract x-y=-10 from x+y=100 by subtracting like terms on each side of the equal sign.
y+y=100+10
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
2y=100+10
Add y to y.
2y=110
Add 100 to 10.
y=55
Divide both sides by 2.
x-55=-10
Substitute 55 for y in x-y=-10. Because the resulting equation contains only one variable, you can solve for x directly.
x=45
Add 55 to both sides of the equation.
x=45,y=55
The system is now solved.