Solve for x, y
x = \frac{650}{43} = 15\frac{5}{43} \approx 15.11627907
y = \frac{3650}{43} = 84\frac{38}{43} \approx 84.88372093
Graph
Share
Copied to clipboard
x+y=100,140x+1000y=87000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+100
Subtract y from both sides of the equation.
140\left(-y+100\right)+1000y=87000
Substitute -y+100 for x in the other equation, 140x+1000y=87000.
-140y+14000+1000y=87000
Multiply 140 times -y+100.
860y+14000=87000
Add -140y to 1000y.
860y=73000
Subtract 14000 from both sides of the equation.
y=\frac{3650}{43}
Divide both sides by 860.
x=-\frac{3650}{43}+100
Substitute \frac{3650}{43} for y in x=-y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{650}{43}
Add 100 to -\frac{3650}{43}.
x=\frac{650}{43},y=\frac{3650}{43}
The system is now solved.
x+y=100,140x+1000y=87000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\140&1000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\87000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\140&1000\end{matrix}\right))\left(\begin{matrix}1&1\\140&1000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\140&1000\end{matrix}\right))\left(\begin{matrix}100\\87000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\140&1000\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\140&1000\end{matrix}\right))\left(\begin{matrix}100\\87000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\140&1000\end{matrix}\right))\left(\begin{matrix}100\\87000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1000}{1000-140}&-\frac{1}{1000-140}\\-\frac{140}{1000-140}&\frac{1}{1000-140}\end{matrix}\right)\left(\begin{matrix}100\\87000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{43}&-\frac{1}{860}\\-\frac{7}{43}&\frac{1}{860}\end{matrix}\right)\left(\begin{matrix}100\\87000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{43}\times 100-\frac{1}{860}\times 87000\\-\frac{7}{43}\times 100+\frac{1}{860}\times 87000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{650}{43}\\\frac{3650}{43}\end{matrix}\right)
Do the arithmetic.
x=\frac{650}{43},y=\frac{3650}{43}
Extract the matrix elements x and y.
x+y=100,140x+1000y=87000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
140x+140y=140\times 100,140x+1000y=87000
To make x and 140x equal, multiply all terms on each side of the first equation by 140 and all terms on each side of the second by 1.
140x+140y=14000,140x+1000y=87000
Simplify.
140x-140x+140y-1000y=14000-87000
Subtract 140x+1000y=87000 from 140x+140y=14000 by subtracting like terms on each side of the equal sign.
140y-1000y=14000-87000
Add 140x to -140x. Terms 140x and -140x cancel out, leaving an equation with only one variable that can be solved.
-860y=14000-87000
Add 140y to -1000y.
-860y=-73000
Add 14000 to -87000.
y=\frac{3650}{43}
Divide both sides by -860.
140x+1000\times \frac{3650}{43}=87000
Substitute \frac{3650}{43} for y in 140x+1000y=87000. Because the resulting equation contains only one variable, you can solve for x directly.
140x+\frac{3650000}{43}=87000
Multiply 1000 times \frac{3650}{43}.
140x=\frac{91000}{43}
Subtract \frac{3650000}{43} from both sides of the equation.
x=\frac{650}{43}
Divide both sides by 140.
x=\frac{650}{43},y=\frac{3650}{43}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}