Solve for x, y, z
x=1
y=-1
z=1
Share
Copied to clipboard
x=-y
Solve x+y=0 for x.
y=-z z=-2y-1
Solve the second equation for y and the third equation for z.
z=-2\left(-1\right)z-1
Substitute -z for y in the equation z=-2y-1.
z=1
Solve z=-2\left(-1\right)z-1 for z.
y=-1
Substitute 1 for z in the equation y=-z.
x=-\left(-1\right)
Substitute -1 for y in the equation x=-y.
x=1
Calculate x from x=-\left(-1\right).
x=1 y=-1 z=1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}