Solve for x, y
x=\frac{\sqrt{31}+1}{4}\approx 1.641941091\text{, }y=\frac{1-\sqrt{31}}{4}\approx -1.141941091
x=\frac{1-\sqrt{31}}{4}\approx -1.141941091\text{, }y=\frac{\sqrt{31}+1}{4}\approx 1.641941091
Graph
Share
Copied to clipboard
x+y=\frac{1}{2},y^{2}+x^{2}=4
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=\frac{1}{2}
Solve x+y=\frac{1}{2} for x by isolating x on the left hand side of the equal sign.
x=-y+\frac{1}{2}
Subtract y from both sides of the equation.
y^{2}+\left(-y+\frac{1}{2}\right)^{2}=4
Substitute -y+\frac{1}{2} for x in the other equation, y^{2}+x^{2}=4.
y^{2}+y^{2}-y+\frac{1}{4}=4
Square -y+\frac{1}{2}.
2y^{2}-y+\frac{1}{4}=4
Add y^{2} to y^{2}.
2y^{2}-y-\frac{15}{4}=0
Subtract 4 from both sides of the equation.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-\frac{15}{4}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times \frac{1}{2}\left(-1\right)\times 2 for b, and -\frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1-8\left(-\frac{15}{4}\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-1\right)±\sqrt{1+30}}{2\times 2}
Multiply -8 times -\frac{15}{4}.
y=\frac{-\left(-1\right)±\sqrt{31}}{2\times 2}
Add 1 to 30.
y=\frac{1±\sqrt{31}}{2\times 2}
The opposite of 1\times \frac{1}{2}\left(-1\right)\times 2 is 1.
y=\frac{1±\sqrt{31}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{\sqrt{31}+1}{4}
Now solve the equation y=\frac{1±\sqrt{31}}{4} when ± is plus. Add 1 to \sqrt{31}.
y=\frac{1-\sqrt{31}}{4}
Now solve the equation y=\frac{1±\sqrt{31}}{4} when ± is minus. Subtract \sqrt{31} from 1.
x=-\frac{\sqrt{31}+1}{4}+\frac{1}{2}
There are two solutions for y: \frac{1+\sqrt{31}}{4} and \frac{1-\sqrt{31}}{4}. Substitute \frac{1+\sqrt{31}}{4} for y in the equation x=-y+\frac{1}{2} to find the corresponding solution for x that satisfies both equations.
x=-\frac{1-\sqrt{31}}{4}+\frac{1}{2}
Now substitute \frac{1-\sqrt{31}}{4} for y in the equation x=-y+\frac{1}{2} and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{\sqrt{31}+1}{4}+\frac{1}{2},y=\frac{\sqrt{31}+1}{4}\text{ or }x=-\frac{1-\sqrt{31}}{4}+\frac{1}{2},y=\frac{1-\sqrt{31}}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}