Solve for x, y, z
x=\frac{36}{55}\approx 0.654545455
y = \frac{12}{11} = 1\frac{1}{11} \approx 1.090909091
z = \frac{441774}{55} = 8032\frac{14}{55} \approx 8032.254545455
Share
Copied to clipboard
y\times 11=12
Consider the third equation. Multiply 2 and 6 to get 12.
y=\frac{12}{11}
Divide both sides by 11.
x\times 5=\frac{12}{11}\times 3
Consider the second equation. Insert the known values of variables into the equation.
x\times 5=\frac{36}{11}
Multiply \frac{12}{11} and 3 to get \frac{36}{11}.
x=\frac{\frac{36}{11}}{5}
Divide both sides by 5.
x=\frac{36}{11\times 5}
Express \frac{\frac{36}{11}}{5} as a single fraction.
x=\frac{36}{55}
Multiply 11 and 5 to get 55.
\frac{36}{55}+\frac{12}{11}+z=8034
Consider the first equation. Insert the known values of variables into the equation.
\frac{96}{55}+z=8034
Add \frac{36}{55} and \frac{12}{11} to get \frac{96}{55}.
z=8034-\frac{96}{55}
Subtract \frac{96}{55} from both sides.
z=\frac{441774}{55}
Subtract \frac{96}{55} from 8034 to get \frac{441774}{55}.
x=\frac{36}{55} y=\frac{12}{11} z=\frac{441774}{55}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}