Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=2y x+y+z=78 x+4=3z
Reorder the equations.
2y+y+z=78 2y+4=3z
Substitute 2y for x in the second and third equation.
y=-\frac{1}{3}z+26 z=\frac{4}{3}+\frac{2}{3}y
Solve these equations for y and z respectively.
z=\frac{4}{3}+\frac{2}{3}\left(-\frac{1}{3}z+26\right)
Substitute -\frac{1}{3}z+26 for y in the equation z=\frac{4}{3}+\frac{2}{3}y.
z=\frac{168}{11}
Solve z=\frac{4}{3}+\frac{2}{3}\left(-\frac{1}{3}z+26\right) for z.
y=-\frac{1}{3}\times \frac{168}{11}+26
Substitute \frac{168}{11} for z in the equation y=-\frac{1}{3}z+26.
y=\frac{230}{11}
Calculate y from y=-\frac{1}{3}\times \frac{168}{11}+26.
x=2\times \frac{230}{11}
Substitute \frac{230}{11} for y in the equation x=2y.
x=\frac{460}{11}
Calculate x from x=2\times \frac{230}{11}.
x=\frac{460}{11} y=\frac{230}{11} z=\frac{168}{11}
The system is now solved.