Solve for x, y, z
x = \frac{460}{11} = 41\frac{9}{11} \approx 41.818181818
y = \frac{230}{11} = 20\frac{10}{11} \approx 20.909090909
z = \frac{168}{11} = 15\frac{3}{11} \approx 15.272727273
Share
Copied to clipboard
x=2y x+y+z=78 x+4=3z
Reorder the equations.
2y+y+z=78 2y+4=3z
Substitute 2y for x in the second and third equation.
y=-\frac{1}{3}z+26 z=\frac{4}{3}+\frac{2}{3}y
Solve these equations for y and z respectively.
z=\frac{4}{3}+\frac{2}{3}\left(-\frac{1}{3}z+26\right)
Substitute -\frac{1}{3}z+26 for y in the equation z=\frac{4}{3}+\frac{2}{3}y.
z=\frac{168}{11}
Solve z=\frac{4}{3}+\frac{2}{3}\left(-\frac{1}{3}z+26\right) for z.
y=-\frac{1}{3}\times \frac{168}{11}+26
Substitute \frac{168}{11} for z in the equation y=-\frac{1}{3}z+26.
y=\frac{230}{11}
Calculate y from y=-\frac{1}{3}\times \frac{168}{11}+26.
x=2\times \frac{230}{11}
Substitute \frac{230}{11} for y in the equation x=2y.
x=\frac{460}{11}
Calculate x from x=2\times \frac{230}{11}.
x=\frac{460}{11} y=\frac{230}{11} z=\frac{168}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}