Solve for x, y, z
x=\frac{\sqrt{57}\sqrt{-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+1}-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx 1.519969372\text{, }y=\frac{-\sqrt{57}\sqrt{-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+1}-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx -0.773387412\text{, }z=\frac{2\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx 4.25341804
x=\frac{\sqrt{57}\sqrt{-\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx 4.25341804\text{, }y=\frac{-\sqrt{57}\sqrt{-\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx 1.519969372\text{, }z=\frac{-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx -0.773387412
x=\frac{\sqrt{57}\sqrt{\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx 4.25341804\text{, }y=\frac{-\sqrt{57}\sqrt{\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx -0.773387412\text{, }z=\frac{\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx 1.519969372
x=\frac{-\sqrt{57}\sqrt{-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+1}-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx -0.773387412\text{, }y=\frac{\sqrt{57}\sqrt{-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+1}-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx 1.519969372\text{, }z=\frac{2\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx 4.25341804
x=\frac{-\sqrt{57}\sqrt{-\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx 1.519969372\text{, }y=\frac{\sqrt{57}\sqrt{-\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx 4.25341804\text{, }z=\frac{-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx -0.773387412
x=\frac{-\sqrt{57}\sqrt{\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx -0.773387412\text{, }y=\frac{\sqrt{57}\sqrt{\sqrt{3}\sin(\frac{2\arccos(\frac{25\sqrt{19}}{722})}{3})-3\left(\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}-\left(\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})\right)^{2}+4}+\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+10}{6}\approx 4.25341804\text{, }z=\frac{\sqrt{57}\sin(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})-\sqrt{19}\cos(\frac{\arccos(\frac{25\sqrt{19}}{722})}{3})+5}{3}\approx 1.519969372
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}