Solve for x, y, z
x=1
y=-5
z=5
Share
Copied to clipboard
x=-y-z+1
Solve x+y+z=1 for x.
-y-z+1+2y+3z=6 -y-z+1+3y+4z=6
Substitute -y-z+1 for x in the second and third equation.
y=-2z+5 z=-\frac{2}{3}y+\frac{5}{3}
Solve these equations for y and z respectively.
z=-\frac{2}{3}\left(-2z+5\right)+\frac{5}{3}
Substitute -2z+5 for y in the equation z=-\frac{2}{3}y+\frac{5}{3}.
z=5
Solve z=-\frac{2}{3}\left(-2z+5\right)+\frac{5}{3} for z.
y=-2\times 5+5
Substitute 5 for z in the equation y=-2z+5.
y=-5
Calculate y from y=-2\times 5+5.
x=-\left(-5\right)-5+1
Substitute -5 for y and 5 for z in the equation x=-y-z+1.
x=1
Calculate x from x=-\left(-5\right)-5+1.
x=1 y=-5 z=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}