Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

8x+8y+8z=2 3x+4y+z=9 5x+2y+5z=3
Multiply each equation by the least common multiple of denominators in it. Simplify.
3x+4y+z=9 8x+8y+8z=2 5x+2y+5z=3
Reorder the equations.
z=-3x-4y+9
Solve 3x+4y+z=9 for z.
8x+8y+8\left(-3x-4y+9\right)=2 5x+2y+5\left(-3x-4y+9\right)=3
Substitute -3x-4y+9 for z in the second and third equation.
y=\frac{35}{12}-\frac{2}{3}x x=\frac{21}{5}-\frac{9}{5}y
Solve these equations for y and x respectively.
x=\frac{21}{5}-\frac{9}{5}\left(\frac{35}{12}-\frac{2}{3}x\right)
Substitute \frac{35}{12}-\frac{2}{3}x for y in the equation x=\frac{21}{5}-\frac{9}{5}y.
x=\frac{21}{4}
Solve x=\frac{21}{5}-\frac{9}{5}\left(\frac{35}{12}-\frac{2}{3}x\right) for x.
y=\frac{35}{12}-\frac{2}{3}\times \frac{21}{4}
Substitute \frac{21}{4} for x in the equation y=\frac{35}{12}-\frac{2}{3}x.
y=-\frac{7}{12}
Calculate y from y=\frac{35}{12}-\frac{2}{3}\times \frac{21}{4}.
z=-3\times \frac{21}{4}-4\left(-\frac{7}{12}\right)+9
Substitute -\frac{7}{12} for y and \frac{21}{4} for x in the equation z=-3x-4y+9.
z=-\frac{53}{12}
Calculate z from z=-3\times \frac{21}{4}-4\left(-\frac{7}{12}\right)+9.
x=\frac{21}{4} y=-\frac{7}{12} z=-\frac{53}{12}
The system is now solved.