Solve for x, y, z
x = \frac{21}{4} = 5\frac{1}{4} = 5.25
y=-\frac{7}{12}\approx -0.583333333
z = -\frac{53}{12} = -4\frac{5}{12} \approx -4.416666667
Share
Copied to clipboard
8x+8y+8z=2 3x+4y+z=9 5x+2y+5z=3
Multiply each equation by the least common multiple of denominators in it. Simplify.
3x+4y+z=9 8x+8y+8z=2 5x+2y+5z=3
Reorder the equations.
z=-3x-4y+9
Solve 3x+4y+z=9 for z.
8x+8y+8\left(-3x-4y+9\right)=2 5x+2y+5\left(-3x-4y+9\right)=3
Substitute -3x-4y+9 for z in the second and third equation.
y=\frac{35}{12}-\frac{2}{3}x x=\frac{21}{5}-\frac{9}{5}y
Solve these equations for y and x respectively.
x=\frac{21}{5}-\frac{9}{5}\left(\frac{35}{12}-\frac{2}{3}x\right)
Substitute \frac{35}{12}-\frac{2}{3}x for y in the equation x=\frac{21}{5}-\frac{9}{5}y.
x=\frac{21}{4}
Solve x=\frac{21}{5}-\frac{9}{5}\left(\frac{35}{12}-\frac{2}{3}x\right) for x.
y=\frac{35}{12}-\frac{2}{3}\times \frac{21}{4}
Substitute \frac{21}{4} for x in the equation y=\frac{35}{12}-\frac{2}{3}x.
y=-\frac{7}{12}
Calculate y from y=\frac{35}{12}-\frac{2}{3}\times \frac{21}{4}.
z=-3\times \frac{21}{4}-4\left(-\frac{7}{12}\right)+9
Substitute -\frac{7}{12} for y and \frac{21}{4} for x in the equation z=-3x-4y+9.
z=-\frac{53}{12}
Calculate z from z=-3\times \frac{21}{4}-4\left(-\frac{7}{12}\right)+9.
x=\frac{21}{4} y=-\frac{7}{12} z=-\frac{53}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}