Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y+6=0
Solve x+y+6=0 for x by isolating x on the left hand side of the equal sign.
x+y=-6
Subtract 6 from both sides of the equation.
x=-y-6
Subtract y from both sides of the equation.
y^{2}+\left(-y-6\right)^{2}=4
Substitute -y-6 for x in the other equation, y^{2}+x^{2}=4.
y^{2}+y^{2}+12y+36=4
Square -y-6.
2y^{2}+12y+36=4
Add y^{2} to y^{2}.
2y^{2}+12y+32=0
Subtract 4 from both sides of the equation.
y=\frac{-12±\sqrt{12^{2}-4\times 2\times 32}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\left(-6\right)\left(-1\right)\times 2 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 2\times 32}}{2\times 2}
Square 1\left(-6\right)\left(-1\right)\times 2.
y=\frac{-12±\sqrt{144-8\times 32}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-12±\sqrt{144-256}}{2\times 2}
Multiply -8 times 32.
y=\frac{-12±\sqrt{-112}}{2\times 2}
Add 144 to -256.
y=\frac{-12±4\sqrt{7}i}{2\times 2}
Take the square root of -112.
y=\frac{-12±4\sqrt{7}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{-12+4\sqrt{7}i}{4}
Now solve the equation y=\frac{-12±4\sqrt{7}i}{4} when ± is plus. Add -12 to 4i\sqrt{7}.
y=-3+\sqrt{7}i
Divide -12+4i\sqrt{7} by 4.
y=\frac{-4\sqrt{7}i-12}{4}
Now solve the equation y=\frac{-12±4\sqrt{7}i}{4} when ± is minus. Subtract 4i\sqrt{7} from -12.
y=-\sqrt{7}i-3
Divide -12-4i\sqrt{7} by 4.
x=-\left(-3+\sqrt{7}i\right)-6
There are two solutions for y: -3+i\sqrt{7} and -3-i\sqrt{7}. Substitute -3+i\sqrt{7} for y in the equation x=-y-6 to find the corresponding solution for x that satisfies both equations.
x=-\left(-\sqrt{7}i-3\right)-6
Now substitute -3-i\sqrt{7} for y in the equation x=-y-6 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(-3+\sqrt{7}i\right)-6,y=-3+\sqrt{7}i\text{ or }x=-\left(-\sqrt{7}i-3\right)-6,y=-\sqrt{7}i-3
The system is now solved.