Solve for x, Y, z
x=0.1
z=0.6
Y=0.3
Share
Copied to clipboard
x=-Y-z+1
Solve x+Y+z=1 for x.
256\left(-Y-z+1\right)+284\left(Y+z\right)=281.2
Substitute -Y-z+1 for x in the equation 256x+284\left(Y+z\right)=281.2.
Y=-2z+1.5 z=\frac{9}{10}-Y
Solve the second equation for Y and the third equation for z.
z=\frac{9}{10}-\left(-2z+1.5\right)
Substitute -2z+1.5 for Y in the equation z=\frac{9}{10}-Y.
z=\frac{3}{5}
Solve z=\frac{9}{10}-\left(-2z+1.5\right) for z.
Y=-2\times \frac{3}{5}+1.5
Substitute \frac{3}{5} for z in the equation Y=-2z+1.5.
Y=\frac{3}{10}
Calculate Y from Y=-2\times \frac{3}{5}+1.5.
x=-\frac{3}{10}-\frac{3}{5}+1
Substitute \frac{3}{10} for Y and \frac{3}{5} for z in the equation x=-Y-z+1.
x=\frac{1}{10}
Calculate x from x=-\frac{3}{10}-\frac{3}{5}+1.
x=\frac{1}{10} Y=\frac{3}{10} z=\frac{3}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}