Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+7y=796,3x+5y=464
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+7y=796
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-7y+796
Subtract 7y from both sides of the equation.
3\left(-7y+796\right)+5y=464
Substitute -7y+796 for x in the other equation, 3x+5y=464.
-21y+2388+5y=464
Multiply 3 times -7y+796.
-16y+2388=464
Add -21y to 5y.
-16y=-1924
Subtract 2388 from both sides of the equation.
y=\frac{481}{4}
Divide both sides by -16.
x=-7\times \frac{481}{4}+796
Substitute \frac{481}{4} for y in x=-7y+796. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{3367}{4}+796
Multiply -7 times \frac{481}{4}.
x=-\frac{183}{4}
Add 796 to -\frac{3367}{4}.
x=-\frac{183}{4},y=\frac{481}{4}
The system is now solved.
x+7y=796,3x+5y=464
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&7\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}796\\464\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&7\\3&5\end{matrix}\right))\left(\begin{matrix}1&7\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\3&5\end{matrix}\right))\left(\begin{matrix}796\\464\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&7\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\3&5\end{matrix}\right))\left(\begin{matrix}796\\464\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&7\\3&5\end{matrix}\right))\left(\begin{matrix}796\\464\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-7\times 3}&-\frac{7}{5-7\times 3}\\-\frac{3}{5-7\times 3}&\frac{1}{5-7\times 3}\end{matrix}\right)\left(\begin{matrix}796\\464\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{16}&\frac{7}{16}\\\frac{3}{16}&-\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}796\\464\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{16}\times 796+\frac{7}{16}\times 464\\\frac{3}{16}\times 796-\frac{1}{16}\times 464\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{183}{4}\\\frac{481}{4}\end{matrix}\right)
Do the arithmetic.
x=-\frac{183}{4},y=\frac{481}{4}
Extract the matrix elements x and y.
x+7y=796,3x+5y=464
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3\times 7y=3\times 796,3x+5y=464
To make x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x+21y=2388,3x+5y=464
Simplify.
3x-3x+21y-5y=2388-464
Subtract 3x+5y=464 from 3x+21y=2388 by subtracting like terms on each side of the equal sign.
21y-5y=2388-464
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
16y=2388-464
Add 21y to -5y.
16y=1924
Add 2388 to -464.
y=\frac{481}{4}
Divide both sides by 16.
3x+5\times \frac{481}{4}=464
Substitute \frac{481}{4} for y in 3x+5y=464. Because the resulting equation contains only one variable, you can solve for x directly.
3x+\frac{2405}{4}=464
Multiply 5 times \frac{481}{4}.
3x=-\frac{549}{4}
Subtract \frac{2405}{4} from both sides of the equation.
x=-\frac{183}{4}
Divide both sides by 3.
x=-\frac{183}{4},y=\frac{481}{4}
The system is now solved.