Solve for x, y, m
x = \frac{584}{67} = 8\frac{48}{67} \approx 8.71641791
y = \frac{126}{67} = 1\frac{59}{67} \approx 1.880597015
m = \frac{845}{67} = 12\frac{41}{67} \approx 12.611940299
Graph
Share
Copied to clipboard
x=20-6y
Solve x+6y=20 for x.
5\left(20-6y\right)-4y-5m=-27 3\left(20-6y\right)-2y+1m-35=0
Substitute 20-6y for x in the second and third equation.
y=\frac{127}{34}-\frac{5}{34}m m=-25+20y
Solve these equations for y and m respectively.
m=-25+20\left(\frac{127}{34}-\frac{5}{34}m\right)
Substitute \frac{127}{34}-\frac{5}{34}m for y in the equation m=-25+20y.
m=\frac{845}{67}
Solve m=-25+20\left(\frac{127}{34}-\frac{5}{34}m\right) for m.
y=\frac{127}{34}-\frac{5}{34}\times \frac{845}{67}
Substitute \frac{845}{67} for m in the equation y=\frac{127}{34}-\frac{5}{34}m.
y=\frac{126}{67}
Calculate y from y=\frac{127}{34}-\frac{5}{34}\times \frac{845}{67}.
x=20-6\times \frac{126}{67}
Substitute \frac{126}{67} for y in the equation x=20-6y.
x=\frac{584}{67}
Calculate x from x=20-6\times \frac{126}{67}.
x=\frac{584}{67} y=\frac{126}{67} m=\frac{845}{67}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}