Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x+y=32
Consider the first equation. Combine x and 6x to get 7x.
2y+6x=31
Consider the second equation. Combine y and y to get 2y.
7x+y=32,6x+2y=31
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x+y=32
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=-y+32
Subtract y from both sides of the equation.
x=\frac{1}{7}\left(-y+32\right)
Divide both sides by 7.
x=-\frac{1}{7}y+\frac{32}{7}
Multiply \frac{1}{7} times -y+32.
6\left(-\frac{1}{7}y+\frac{32}{7}\right)+2y=31
Substitute \frac{-y+32}{7} for x in the other equation, 6x+2y=31.
-\frac{6}{7}y+\frac{192}{7}+2y=31
Multiply 6 times \frac{-y+32}{7}.
\frac{8}{7}y+\frac{192}{7}=31
Add -\frac{6y}{7} to 2y.
\frac{8}{7}y=\frac{25}{7}
Subtract \frac{192}{7} from both sides of the equation.
y=\frac{25}{8}
Divide both sides of the equation by \frac{8}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{7}\times \frac{25}{8}+\frac{32}{7}
Substitute \frac{25}{8} for y in x=-\frac{1}{7}y+\frac{32}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{25}{56}+\frac{32}{7}
Multiply -\frac{1}{7} times \frac{25}{8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{33}{8}
Add \frac{32}{7} to -\frac{25}{56} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{33}{8},y=\frac{25}{8}
The system is now solved.
7x+y=32
Consider the first equation. Combine x and 6x to get 7x.
2y+6x=31
Consider the second equation. Combine y and y to get 2y.
7x+y=32,6x+2y=31
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&1\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\31\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&1\\6&2\end{matrix}\right))\left(\begin{matrix}7&1\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\6&2\end{matrix}\right))\left(\begin{matrix}32\\31\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&1\\6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\6&2\end{matrix}\right))\left(\begin{matrix}32\\31\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\6&2\end{matrix}\right))\left(\begin{matrix}32\\31\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-6}&-\frac{1}{7\times 2-6}\\-\frac{6}{7\times 2-6}&\frac{7}{7\times 2-6}\end{matrix}\right)\left(\begin{matrix}32\\31\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\-\frac{3}{4}&\frac{7}{8}\end{matrix}\right)\left(\begin{matrix}32\\31\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 32-\frac{1}{8}\times 31\\-\frac{3}{4}\times 32+\frac{7}{8}\times 31\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{8}\\\frac{25}{8}\end{matrix}\right)
Do the arithmetic.
x=\frac{33}{8},y=\frac{25}{8}
Extract the matrix elements x and y.
7x+y=32
Consider the first equation. Combine x and 6x to get 7x.
2y+6x=31
Consider the second equation. Combine y and y to get 2y.
7x+y=32,6x+2y=31
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 7x+6y=6\times 32,7\times 6x+7\times 2y=7\times 31
To make 7x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 7.
42x+6y=192,42x+14y=217
Simplify.
42x-42x+6y-14y=192-217
Subtract 42x+14y=217 from 42x+6y=192 by subtracting like terms on each side of the equal sign.
6y-14y=192-217
Add 42x to -42x. Terms 42x and -42x cancel out, leaving an equation with only one variable that can be solved.
-8y=192-217
Add 6y to -14y.
-8y=-25
Add 192 to -217.
y=\frac{25}{8}
Divide both sides by -8.
6x+2\times \frac{25}{8}=31
Substitute \frac{25}{8} for y in 6x+2y=31. Because the resulting equation contains only one variable, you can solve for x directly.
6x+\frac{25}{4}=31
Multiply 2 times \frac{25}{8}.
6x=\frac{99}{4}
Subtract \frac{25}{4} from both sides of the equation.
x=\frac{33}{8}
Divide both sides by 6.
x=\frac{33}{8},y=\frac{25}{8}
The system is now solved.