Solve for x, y
x = \frac{113489}{13} = 8729\frac{12}{13} \approx 8729.923076923
y = \frac{120639}{13} = 9279\frac{12}{13} \approx 9279.923076923
Graph
Share
Copied to clipboard
0.065x=567.5-0.055
Consider the second equation. Subtract 0.055 from both sides.
0.065x=567.445
Subtract 0.055 from 567.5 to get 567.445.
x=\frac{567.445}{0.065}
Divide both sides by 0.065.
x=\frac{567445}{65}
Expand \frac{567.445}{0.065} by multiplying both numerator and the denominator by 1000.
x=\frac{113489}{13}
Reduce the fraction \frac{567445}{65} to lowest terms by extracting and canceling out 5.
\frac{113489}{13}+550=y
Consider the first equation. Insert the known values of variables into the equation.
\frac{120639}{13}=y
Add \frac{113489}{13} and 550 to get \frac{120639}{13}.
y=\frac{120639}{13}
Swap sides so that all variable terms are on the left hand side.
x=\frac{113489}{13} y=\frac{120639}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}