Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+5y=12,12x+y=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+5y=12
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-5y+12
Subtract 5y from both sides of the equation.
12\left(-5y+12\right)+y=20
Substitute -5y+12 for x in the other equation, 12x+y=20.
-60y+144+y=20
Multiply 12 times -5y+12.
-59y+144=20
Add -60y to y.
-59y=-124
Subtract 144 from both sides of the equation.
y=\frac{124}{59}
Divide both sides by -59.
x=-5\times \frac{124}{59}+12
Substitute \frac{124}{59} for y in x=-5y+12. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{620}{59}+12
Multiply -5 times \frac{124}{59}.
x=\frac{88}{59}
Add 12 to -\frac{620}{59}.
x=\frac{88}{59},y=\frac{124}{59}
The system is now solved.
x+5y=12,12x+y=20
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&5\\12&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\20\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&5\\12&1\end{matrix}\right))\left(\begin{matrix}1&5\\12&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\12&1\end{matrix}\right))\left(\begin{matrix}12\\20\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&5\\12&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\12&1\end{matrix}\right))\left(\begin{matrix}12\\20\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\12&1\end{matrix}\right))\left(\begin{matrix}12\\20\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-5\times 12}&-\frac{5}{1-5\times 12}\\-\frac{12}{1-5\times 12}&\frac{1}{1-5\times 12}\end{matrix}\right)\left(\begin{matrix}12\\20\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{59}&\frac{5}{59}\\\frac{12}{59}&-\frac{1}{59}\end{matrix}\right)\left(\begin{matrix}12\\20\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{59}\times 12+\frac{5}{59}\times 20\\\frac{12}{59}\times 12-\frac{1}{59}\times 20\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{88}{59}\\\frac{124}{59}\end{matrix}\right)
Do the arithmetic.
x=\frac{88}{59},y=\frac{124}{59}
Extract the matrix elements x and y.
x+5y=12,12x+y=20
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12x+12\times 5y=12\times 12,12x+y=20
To make x and 12x equal, multiply all terms on each side of the first equation by 12 and all terms on each side of the second by 1.
12x+60y=144,12x+y=20
Simplify.
12x-12x+60y-y=144-20
Subtract 12x+y=20 from 12x+60y=144 by subtracting like terms on each side of the equal sign.
60y-y=144-20
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
59y=144-20
Add 60y to -y.
59y=124
Add 144 to -20.
y=\frac{124}{59}
Divide both sides by 59.
12x+\frac{124}{59}=20
Substitute \frac{124}{59} for y in 12x+y=20. Because the resulting equation contains only one variable, you can solve for x directly.
12x=\frac{1056}{59}
Subtract \frac{124}{59} from both sides of the equation.
x=\frac{88}{59}
Divide both sides by 12.
x=\frac{88}{59},y=\frac{124}{59}
The system is now solved.