Solve for x, y
x=61
y = \frac{257}{50} = 5\frac{7}{50} = 5.14
Graph
Share
Copied to clipboard
x=65-4
Consider the first equation. Subtract 4 from both sides.
x=61
Subtract 4 from 65 to get 61.
63\times 61+50y=4100
Consider the second equation. Insert the known values of variables into the equation.
3843+50y=4100
Multiply 63 and 61 to get 3843.
50y=4100-3843
Subtract 3843 from both sides.
50y=257
Subtract 3843 from 4100 to get 257.
y=\frac{257}{50}
Divide both sides by 50.
x=61 y=\frac{257}{50}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}