Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+3y=8,\frac{1}{2}\left(x-1\right)-y=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=8
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-3y+8
Subtract 3y from both sides of the equation.
\frac{1}{2}\left(-3y+8-1\right)-y=1
Substitute -3y+8 for x in the other equation, \frac{1}{2}\left(x-1\right)-y=1.
\frac{1}{2}\left(-3y+7\right)-y=1
Add 8 to -1.
-\frac{3}{2}y+\frac{7}{2}-y=1
Multiply \frac{1}{2} times -3y+7.
-\frac{5}{2}y+\frac{7}{2}=1
Add -\frac{3y}{2} to -y.
-\frac{5}{2}y=-\frac{5}{2}
Subtract \frac{7}{2} from both sides of the equation.
y=1
Divide both sides of the equation by -\frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-3+8
Substitute 1 for y in x=-3y+8. Because the resulting equation contains only one variable, you can solve for x directly.
x=5
Add 8 to -3.
x=5,y=1
The system is now solved.
x+3y=8,\frac{1}{2}\left(x-1\right)-y=1
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{2}\left(x-1\right)-y=1
Simplify the second equation to put it in standard form.
\frac{1}{2}x-\frac{1}{2}-y=1
Multiply \frac{1}{2} times x-1.
\frac{1}{2}x-y=\frac{3}{2}
Add \frac{1}{2} to both sides of the equation.
\left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\\frac{3}{2}\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}8\\\frac{3}{2}\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}8\\\frac{3}{2}\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}8\\\frac{3}{2}\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3\times \frac{1}{2}}&-\frac{3}{-1-3\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{-1-3\times \frac{1}{2}}&\frac{1}{-1-3\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}8\\\frac{3}{2}\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{6}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\\frac{3}{2}\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 8+\frac{6}{5}\times \frac{3}{2}\\\frac{1}{5}\times 8-\frac{2}{5}\times \frac{3}{2}\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
Do the arithmetic.
x=5,y=1
Extract the matrix elements x and y.