Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+y=60
Consider the first equation. Combine x and 3x to get 4x.
4x+2y=7
Consider the second equation. Combine x and 3x to get 4x.
4x+y=60,4x+2y=7
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-y+60
Subtract y from both sides of the equation.
x=\frac{1}{4}\left(-y+60\right)
Divide both sides by 4.
x=-\frac{1}{4}y+15
Multiply \frac{1}{4} times -y+60.
4\left(-\frac{1}{4}y+15\right)+2y=7
Substitute -\frac{y}{4}+15 for x in the other equation, 4x+2y=7.
-y+60+2y=7
Multiply 4 times -\frac{y}{4}+15.
y+60=7
Add -y to 2y.
y=-53
Subtract 60 from both sides of the equation.
x=-\frac{1}{4}\left(-53\right)+15
Substitute -53 for y in x=-\frac{1}{4}y+15. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{53}{4}+15
Multiply -\frac{1}{4} times -53.
x=\frac{113}{4}
Add 15 to \frac{53}{4}.
x=\frac{113}{4},y=-53
The system is now solved.
4x+y=60
Consider the first equation. Combine x and 3x to get 4x.
4x+2y=7
Consider the second equation. Combine x and 3x to get 4x.
4x+y=60,4x+2y=7
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\7\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&1\\4&2\end{matrix}\right))\left(\begin{matrix}4&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\4&2\end{matrix}\right))\left(\begin{matrix}60\\7\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\4&2\end{matrix}\right))\left(\begin{matrix}60\\7\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\4&2\end{matrix}\right))\left(\begin{matrix}60\\7\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-4}&-\frac{1}{4\times 2-4}\\-\frac{4}{4\times 2-4}&\frac{4}{4\times 2-4}\end{matrix}\right)\left(\begin{matrix}60\\7\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{4}\\-1&1\end{matrix}\right)\left(\begin{matrix}60\\7\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 60-\frac{1}{4}\times 7\\-60+7\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{113}{4}\\-53\end{matrix}\right)
Do the arithmetic.
x=\frac{113}{4},y=-53
Extract the matrix elements x and y.
4x+y=60
Consider the first equation. Combine x and 3x to get 4x.
4x+2y=7
Consider the second equation. Combine x and 3x to get 4x.
4x+y=60,4x+2y=7
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x-4x+y-2y=60-7
Subtract 4x+2y=7 from 4x+y=60 by subtracting like terms on each side of the equal sign.
y-2y=60-7
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
-y=60-7
Add y to -2y.
-y=53
Add 60 to -7.
y=-53
Divide both sides by -1.
4x+2\left(-53\right)=7
Substitute -53 for y in 4x+2y=7. Because the resulting equation contains only one variable, you can solve for x directly.
4x-106=7
Multiply 2 times -53.
4x=113
Add 106 to both sides of the equation.
x=\frac{113}{4}
Divide both sides by 4.
x=\frac{113}{4},y=-53
The system is now solved.