Solve for x, y
x=-1
y=3
Graph
Share
Copied to clipboard
x+3\left(y-1\right)=5,5x-y+13=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3\left(y-1\right)=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x+3y-3=5
Multiply 3 times y-1.
x+3y=8
Add 3 to both sides of the equation.
x=-3y+8
Subtract 3y from both sides of the equation.
5\left(-3y+8\right)-y+13=5
Substitute -3y+8 for x in the other equation, 5x-y+13=5.
-15y+40-y+13=5
Multiply 5 times -3y+8.
-16y+40+13=5
Add -15y to -y.
-16y+53=5
Add 40 to 13.
-16y=-48
Subtract 53 from both sides of the equation.
y=3
Divide both sides by -16.
x=-3\times 3+8
Substitute 3 for y in x=-3y+8. Because the resulting equation contains only one variable, you can solve for x directly.
x=-9+8
Multiply -3 times 3.
x=-1
Add 8 to -9.
x=-1,y=3
The system is now solved.
x+3\left(y-1\right)=5,5x-y+13=5
Put the equations in standard form and then use matrices to solve the system of equations.
x+3\left(y-1\right)=5
Simplify the first equation to put it in standard form.
x+3y-3=5
Multiply 3 times y-1.
x+3y=8
Add 3 to both sides of the equation.
\left(\begin{matrix}1&3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-8\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&3\\5&-1\end{matrix}\right))\left(\begin{matrix}1&3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-1\end{matrix}\right))\left(\begin{matrix}8\\-8\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&3\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-1\end{matrix}\right))\left(\begin{matrix}8\\-8\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-1\end{matrix}\right))\left(\begin{matrix}8\\-8\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3\times 5}&-\frac{3}{-1-3\times 5}\\-\frac{5}{-1-3\times 5}&\frac{1}{-1-3\times 5}\end{matrix}\right)\left(\begin{matrix}8\\-8\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}&\frac{3}{16}\\\frac{5}{16}&-\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}8\\-8\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}\times 8+\frac{3}{16}\left(-8\right)\\\frac{5}{16}\times 8-\frac{1}{16}\left(-8\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Do the arithmetic.
x=-1,y=3
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}