Solve for x, y, k
x=\frac{2}{3}\approx 0.666666667
y=3
k=\frac{5}{6}\approx 0.833333333
Graph
Share
Copied to clipboard
x+2y-x=6
Consider the first equation. Subtract x from both sides.
2y=6
Combine x and -x to get 0.
y=\frac{6}{2}
Divide both sides by 2.
y=3
Divide 6 by 2 to get 3.
2x-3=-2k
Consider the second equation. Insert the known values of variables into the equation.
2x-3+2k=0
Add 2k to both sides.
2x+2k=3
Add 3 to both sides. Anything plus zero gives itself.
3x+3=5
Consider the third equation. Insert the known values of variables into the equation.
3x=5-3
Subtract 3 from both sides.
3x=2
Subtract 3 from 5 to get 2.
x=\frac{2}{3}
Divide both sides by 3.
2\times \frac{2}{3}+2k=3
Consider the second equation. Insert the known values of variables into the equation.
\frac{4}{3}+2k=3
Multiply 2 and \frac{2}{3} to get \frac{4}{3}.
2k=3-\frac{4}{3}
Subtract \frac{4}{3} from both sides.
2k=\frac{5}{3}
Subtract \frac{4}{3} from 3 to get \frac{5}{3}.
k=\frac{\frac{5}{3}}{2}
Divide both sides by 2.
k=\frac{5}{3\times 2}
Express \frac{\frac{5}{3}}{2} as a single fraction.
k=\frac{5}{6}
Multiply 3 and 2 to get 6.
x=\frac{2}{3} y=3 k=\frac{5}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}