Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+2y=3000,3x+4y=5400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=3000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+3000
Subtract 2y from both sides of the equation.
3\left(-2y+3000\right)+4y=5400
Substitute -2y+3000 for x in the other equation, 3x+4y=5400.
-6y+9000+4y=5400
Multiply 3 times -2y+3000.
-2y+9000=5400
Add -6y to 4y.
-2y=-3600
Subtract 9000 from both sides of the equation.
y=1800
Divide both sides by -2.
x=-2\times 1800+3000
Substitute 1800 for y in x=-2y+3000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-3600+3000
Multiply -2 times 1800.
x=-600
Add 3000 to -3600.
x=-600,y=1800
The system is now solved.
x+2y=3000,3x+4y=5400
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3000\\5400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}3000\\5400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}3000\\5400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}3000\\5400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 3}&-\frac{2}{4-2\times 3}\\-\frac{3}{4-2\times 3}&\frac{1}{4-2\times 3}\end{matrix}\right)\left(\begin{matrix}3000\\5400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3000\\5400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 3000+5400\\\frac{3}{2}\times 3000-\frac{1}{2}\times 5400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-600\\1800\end{matrix}\right)
Do the arithmetic.
x=-600,y=1800
Extract the matrix elements x and y.
x+2y=3000,3x+4y=5400
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3\times 2y=3\times 3000,3x+4y=5400
To make x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x+6y=9000,3x+4y=5400
Simplify.
3x-3x+6y-4y=9000-5400
Subtract 3x+4y=5400 from 3x+6y=9000 by subtracting like terms on each side of the equal sign.
6y-4y=9000-5400
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
2y=9000-5400
Add 6y to -4y.
2y=3600
Add 9000 to -5400.
y=1800
Divide both sides by 2.
3x+4\times 1800=5400
Substitute 1800 for y in 3x+4y=5400. Because the resulting equation contains only one variable, you can solve for x directly.
3x+7200=5400
Multiply 4 times 1800.
3x=-1800
Subtract 7200 from both sides of the equation.
x=-600
Divide both sides by 3.
x=-600,y=1800
The system is now solved.