Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-2y-5z+6
Solve x+2y+5z=6 for x.
2\left(-2y-5z+6\right)-2y-z=1 3\left(-2y-5z+6\right)+4y-2z=4
Substitute -2y-5z+6 for x in the second and third equation.
y=\frac{11}{6}-\frac{11}{6}z z=\frac{14}{17}-\frac{2}{17}y
Solve these equations for y and z respectively.
z=\frac{14}{17}-\frac{2}{17}\left(\frac{11}{6}-\frac{11}{6}z\right)
Substitute \frac{11}{6}-\frac{11}{6}z for y in the equation z=\frac{14}{17}-\frac{2}{17}y.
z=\frac{31}{40}
Solve z=\frac{14}{17}-\frac{2}{17}\left(\frac{11}{6}-\frac{11}{6}z\right) for z.
y=\frac{11}{6}-\frac{11}{6}\times \frac{31}{40}
Substitute \frac{31}{40} for z in the equation y=\frac{11}{6}-\frac{11}{6}z.
y=\frac{33}{80}
Calculate y from y=\frac{11}{6}-\frac{11}{6}\times \frac{31}{40}.
x=-2\times \frac{33}{80}-5\times \frac{31}{40}+6
Substitute \frac{33}{80} for y and \frac{31}{40} for z in the equation x=-2y-5z+6.
x=\frac{13}{10}
Calculate x from x=-2\times \frac{33}{80}-5\times \frac{31}{40}+6.
x=\frac{13}{10} y=\frac{33}{80} z=\frac{31}{40}
The system is now solved.