Solve for x, y, z
x = \frac{13}{10} = 1\frac{3}{10} = 1.3
y=\frac{33}{80}=0.4125
z=\frac{31}{40}=0.775
Share
Copied to clipboard
x=-2y-5z+6
Solve x+2y+5z=6 for x.
2\left(-2y-5z+6\right)-2y-z=1 3\left(-2y-5z+6\right)+4y-2z=4
Substitute -2y-5z+6 for x in the second and third equation.
y=\frac{11}{6}-\frac{11}{6}z z=\frac{14}{17}-\frac{2}{17}y
Solve these equations for y and z respectively.
z=\frac{14}{17}-\frac{2}{17}\left(\frac{11}{6}-\frac{11}{6}z\right)
Substitute \frac{11}{6}-\frac{11}{6}z for y in the equation z=\frac{14}{17}-\frac{2}{17}y.
z=\frac{31}{40}
Solve z=\frac{14}{17}-\frac{2}{17}\left(\frac{11}{6}-\frac{11}{6}z\right) for z.
y=\frac{11}{6}-\frac{11}{6}\times \frac{31}{40}
Substitute \frac{31}{40} for z in the equation y=\frac{11}{6}-\frac{11}{6}z.
y=\frac{33}{80}
Calculate y from y=\frac{11}{6}-\frac{11}{6}\times \frac{31}{40}.
x=-2\times \frac{33}{80}-5\times \frac{31}{40}+6
Substitute \frac{33}{80} for y and \frac{31}{40} for z in the equation x=-2y-5z+6.
x=\frac{13}{10}
Calculate x from x=-2\times \frac{33}{80}-5\times \frac{31}{40}+6.
x=\frac{13}{10} y=\frac{33}{80} z=\frac{31}{40}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}