Solve for x, y
x=0
y=130
Graph
Share
Copied to clipboard
3x+50+y=180
Consider the first equation. Combine x and 2x to get 3x.
3x+y=180-50
Subtract 50 from both sides.
3x+y=130
Subtract 50 from 180 to get 130.
y+2x=180-50
Consider the second equation. Subtract 50 from both sides.
y+2x=130
Subtract 50 from 180 to get 130.
3x+y=130,2x+y=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+y=130
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-y+130
Subtract y from both sides of the equation.
x=\frac{1}{3}\left(-y+130\right)
Divide both sides by 3.
x=-\frac{1}{3}y+\frac{130}{3}
Multiply \frac{1}{3} times -y+130.
2\left(-\frac{1}{3}y+\frac{130}{3}\right)+y=130
Substitute \frac{-y+130}{3} for x in the other equation, 2x+y=130.
-\frac{2}{3}y+\frac{260}{3}+y=130
Multiply 2 times \frac{-y+130}{3}.
\frac{1}{3}y+\frac{260}{3}=130
Add -\frac{2y}{3} to y.
\frac{1}{3}y=\frac{130}{3}
Subtract \frac{260}{3} from both sides of the equation.
y=130
Multiply both sides by 3.
x=-\frac{1}{3}\times 130+\frac{130}{3}
Substitute 130 for y in x=-\frac{1}{3}y+\frac{130}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-130+130}{3}
Multiply -\frac{1}{3} times 130.
x=0
Add \frac{130}{3} to -\frac{130}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0,y=130
The system is now solved.
3x+50+y=180
Consider the first equation. Combine x and 2x to get 3x.
3x+y=180-50
Subtract 50 from both sides.
3x+y=130
Subtract 50 from 180 to get 130.
y+2x=180-50
Consider the second equation. Subtract 50 from both sides.
y+2x=130
Subtract 50 from 180 to get 130.
3x+y=130,2x+y=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}130\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}130\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}130\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}130\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}130\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}130-130\\-2\times 130+3\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\130\end{matrix}\right)
Do the arithmetic.
x=0,y=130
Extract the matrix elements x and y.
3x+50+y=180
Consider the first equation. Combine x and 2x to get 3x.
3x+y=180-50
Subtract 50 from both sides.
3x+y=130
Subtract 50 from 180 to get 130.
y+2x=180-50
Consider the second equation. Subtract 50 from both sides.
y+2x=130
Subtract 50 from 180 to get 130.
3x+y=130,2x+y=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-2x+y-y=130-130
Subtract 2x+y=130 from 3x+y=130 by subtracting like terms on each side of the equal sign.
3x-2x=130-130
Add y to -y. Terms y and -y cancel out, leaving an equation with only one variable that can be solved.
x=130-130
Add 3x to -2x.
x=0
Add 130 to -130.
y=130
Substitute 0 for x in 2x+y=130. Because the resulting equation contains only one variable, you can solve for y directly.
x=0,y=130
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}