Solve for v, w, u
v = -\frac{25}{14} = -1\frac{11}{14} \approx -1.785714286
w=-\frac{11}{14}\approx -0.785714286
u = -\frac{15}{14} = -1\frac{1}{14} \approx -1.071428571
Share
Copied to clipboard
v=w-1
Solve v-w+1=0 for v.
-2u+4\left(w-1\right)+5=0 u+2\left(w-1\right)+3w+7=0
Substitute w-1 for v in the second and third equation.
w=-\frac{1}{4}+\frac{1}{2}u u=-5-5w
Solve these equations for w and u respectively.
u=-5-5\left(-\frac{1}{4}+\frac{1}{2}u\right)
Substitute -\frac{1}{4}+\frac{1}{2}u for w in the equation u=-5-5w.
u=-\frac{15}{14}
Solve u=-5-5\left(-\frac{1}{4}+\frac{1}{2}u\right) for u.
w=-\frac{1}{4}+\frac{1}{2}\left(-\frac{15}{14}\right)
Substitute -\frac{15}{14} for u in the equation w=-\frac{1}{4}+\frac{1}{2}u.
w=-\frac{11}{14}
Calculate w from w=-\frac{1}{4}+\frac{1}{2}\left(-\frac{15}{14}\right).
v=-\frac{11}{14}-1
Substitute -\frac{11}{14} for w in the equation v=w-1.
v=-\frac{25}{14}
Calculate v from v=-\frac{11}{14}-1.
v=-\frac{25}{14} w=-\frac{11}{14} u=-\frac{15}{14}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}