\left. \begin{array} { l } { v ^ { 2 } - 7 v + 10 \quad ( v - 5 ) } \\ { r ^ { 2 } + 4 n - 12 } \end{array} \right.
Least Common Multiple
\left(4n+r^{2}-12\right)\left(v^{2}+3v-50\right)
Evaluate
v^{2}+3v-50,\ 4n+r^{2}-12
Share
Copied to clipboard
v^{2}+3v-50=\left(v-\left(-\frac{1}{2}\sqrt{209}-\frac{3}{2}\right)\right)\left(v-\left(\frac{1}{2}\sqrt{209}-\frac{3}{2}\right)\right)
Factor the expressions that are not already factored.
\left(4n+r^{2}-12\right)\left(v^{2}+3v-50\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
4nv^{2}+12nv-200n+r^{2}v^{2}-50r^{2}-12v^{2}+3vr^{2}-36v+600
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}