Evaluate
3q-3+\frac{4}{p}
Factor
3q-3+\frac{4}{p}
Share
Copied to clipboard
p\times \frac{1^{2}}{p^{2}}+p\times \frac{1}{p}+3q-4+3\times \frac{1}{p}
To raise \frac{1}{p} to a power, raise both numerator and denominator to the power and then divide.
\frac{p\times 1^{2}}{p^{2}}+p\times \frac{1}{p}+3q-4+3\times \frac{1}{p}
Express p\times \frac{1^{2}}{p^{2}} as a single fraction.
\frac{1^{2}}{p}+p\times \frac{1}{p}+3q-4+3\times \frac{1}{p}
Cancel out p in both numerator and denominator.
\frac{1^{2}}{p}+1+3q-4+3\times \frac{1}{p}
Cancel out p and p.
\frac{1^{2}}{p}-3+3q+3\times \frac{1}{p}
Subtract 4 from 1 to get -3.
\frac{1^{2}}{p}-3+3q+\frac{3}{p}
Express 3\times \frac{1}{p} as a single fraction.
\frac{1^{2}}{p}+\frac{\left(-3+3q\right)p}{p}+\frac{3}{p}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3+3q times \frac{p}{p}.
\frac{1^{2}+\left(-3+3q\right)p}{p}+\frac{3}{p}
Since \frac{1^{2}}{p} and \frac{\left(-3+3q\right)p}{p} have the same denominator, add them by adding their numerators.
\frac{1^{2}-3p+3qp}{p}+\frac{3}{p}
Do the multiplications in 1^{2}+\left(-3+3q\right)p.
\frac{1-3p+3qp}{p}+\frac{3}{p}
Combine like terms in 1^{2}-3p+3qp.
\frac{1-3p+3qp+3}{p}
Since \frac{1-3p+3qp}{p} and \frac{3}{p} have the same denominator, add them by adding their numerators.
\frac{4-3p+3qp}{p}
Combine like terms in 1-3p+3qp+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}