Solve for n, t, d, y, w
y=27
t=18
n=28
d=24
w=-2.53
Share
Copied to clipboard
n=28
Consider the first equation. Add 28 to both sides. Anything plus zero gives itself.
t-19=-1
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
t=-1+19
Add 19 to both sides.
t=18
Add -1 and 19 to get 18.
d-10=14
Consider the third equation. Swap sides so that all variable terms are on the left hand side.
d=14+10
Add 10 to both sides.
d=24
Add 14 and 10 to get 24.
-16+y=11
Consider the fourth equation. Swap sides so that all variable terms are on the left hand side.
y=11+16
Add 16 to both sides.
y=27
Add 11 and 16 to get 27.
5.47=w+8
Consider the fifth equation. The opposite of -8 is 8.
w+8=5.47
Swap sides so that all variable terms are on the left hand side.
w=5.47-8
Subtract 8 from both sides.
w=-2.53
Subtract 8 from 5.47 to get -2.53.
n=28 t=18 d=24 y=27 w=-2.53
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}