\left. \begin{array} { l } { m ^ { 2 } - n ^ { 2 } - m + 1 } \\ { c + d - c ^ { 2 } + d ^ { 2 } } \end{array} \right.
Least Common Multiple
\left(c-d-1\right)\left(c+d\right)\left(m^{2}-m-n^{2}+1\right)
Evaluate
m^{2}-m-n^{2}+1,\ d^{2}-c^{2}+c+d
Share
Copied to clipboard
c+d-c^{2}+d^{2}=\left(c-d-1\right)\left(-c-d\right)
Factor the expressions that are not already factored.
\left(c-d-1\right)\left(c+d\right)\left(m^{2}-m-n^{2}+1\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
c^{2}m^{2}-d^{2}m^{2}-cm^{2}-dm^{2}+md^{2}+cm+dm-mc^{2}+d^{2}n^{2}+cn^{2}+dn^{2}-c^{2}n^{2}-d^{2}+c^{2}-c-d
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}