Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-2m-3=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-3\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -3 for c in the quadratic formula.
m=\frac{2±4}{2}
Do the calculations.
m=3 m=-1
Solve the equation m=\frac{2±4}{2} when ± is plus and when ± is minus.
\left(m-3\right)\left(m+1\right)<0
Rewrite the inequality by using the obtained solutions.
m-3>0 m+1<0
For the product to be negative, m-3 and m+1 have to be of the opposite signs. Consider the case when m-3 is positive and m+1 is negative.
m\in \emptyset
This is false for any m.
m+1>0 m-3<0
Consider the case when m+1 is positive and m-3 is negative.
m\in \left(-1,3\right)
The solution satisfying both inequalities is m\in \left(-1,3\right).
m\in \left(-1,3\right)
The final solution is the union of the obtained solutions.