Solve for k, x
x=7
k=4
Graph
Share
Copied to clipboard
0.6x-1.2=0.5\left(x+3\right)-2
Consider the second equation. Use the distributive property to multiply 0.3 by 2x-4.
0.6x-1.2=0.5x+1.5-2
Use the distributive property to multiply 0.5 by x+3.
0.6x-1.2=0.5x-0.5
Subtract 2 from 1.5 to get -0.5.
0.6x-1.2-0.5x=-0.5
Subtract 0.5x from both sides.
0.1x-1.2=-0.5
Combine 0.6x and -0.5x to get 0.1x.
0.1x=-0.5+1.2
Add 1.2 to both sides.
0.1x=0.7
Add -0.5 and 1.2 to get 0.7.
x=\frac{0.7}{0.1}
Divide both sides by 0.1.
x=7
Expand \frac{0.7}{0.1} by multiplying both numerator and the denominator by 10. Anything divided by one gives itself.
k\times 7-5=3\times 7+2
Consider the first equation. Insert the known values of variables into the equation.
k\times 7-5=21+2
Multiply 3 and 7 to get 21.
k\times 7-5=23
Add 21 and 2 to get 23.
k\times 7=23+5
Add 5 to both sides.
k\times 7=28
Add 23 and 5 to get 28.
k=\frac{28}{7}
Divide both sides by 7.
k=4
Divide 28 by 7 to get 4.
k=4 x=7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}