Solve for k, p
k=56
p=120
Share
Copied to clipboard
k+p=176,3k+2.75p=498
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
k+p=176
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
k=-p+176
Subtract p from both sides of the equation.
3\left(-p+176\right)+2.75p=498
Substitute -p+176 for k in the other equation, 3k+2.75p=498.
-3p+528+2.75p=498
Multiply 3 times -p+176.
-0.25p+528=498
Add -3p to \frac{11p}{4}.
-0.25p=-30
Subtract 528 from both sides of the equation.
p=120
Multiply both sides by -4.
k=-120+176
Substitute 120 for p in k=-p+176. Because the resulting equation contains only one variable, you can solve for k directly.
k=56
Add 176 to -120.
k=56,p=120
The system is now solved.
k+p=176,3k+2.75p=498
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\3&2.75\end{matrix}\right)\left(\begin{matrix}k\\p\end{matrix}\right)=\left(\begin{matrix}176\\498\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\3&2.75\end{matrix}\right))\left(\begin{matrix}1&1\\3&2.75\end{matrix}\right)\left(\begin{matrix}k\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2.75\end{matrix}\right))\left(\begin{matrix}176\\498\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\3&2.75\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2.75\end{matrix}\right))\left(\begin{matrix}176\\498\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2.75\end{matrix}\right))\left(\begin{matrix}176\\498\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2.75}{2.75-3}&-\frac{1}{2.75-3}\\-\frac{3}{2.75-3}&\frac{1}{2.75-3}\end{matrix}\right)\left(\begin{matrix}176\\498\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\p\end{matrix}\right)=\left(\begin{matrix}-11&4\\12&-4\end{matrix}\right)\left(\begin{matrix}176\\498\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\p\end{matrix}\right)=\left(\begin{matrix}-11\times 176+4\times 498\\12\times 176-4\times 498\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\p\end{matrix}\right)=\left(\begin{matrix}56\\120\end{matrix}\right)
Do the arithmetic.
k=56,p=120
Extract the matrix elements k and p.
k+p=176,3k+2.75p=498
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3k+3p=3\times 176,3k+2.75p=498
To make k and 3k equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3k+3p=528,3k+2.75p=498
Simplify.
3k-3k+3p-2.75p=528-498
Subtract 3k+2.75p=498 from 3k+3p=528 by subtracting like terms on each side of the equal sign.
3p-2.75p=528-498
Add 3k to -3k. Terms 3k and -3k cancel out, leaving an equation with only one variable that can be solved.
0.25p=528-498
Add 3p to -\frac{11p}{4}.
0.25p=30
Add 528 to -498.
p=120
Multiply both sides by 4.
3k+2.75\times 120=498
Substitute 120 for p in 3k+2.75p=498. Because the resulting equation contains only one variable, you can solve for k directly.
3k+330=498
Multiply 2.75 times 120.
3k=168
Subtract 330 from both sides of the equation.
k=56
Divide both sides by 3.
k=56,p=120
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}