Solve for f, x
x=-1
f=7
Graph
Share
Copied to clipboard
f\left(-1\right)=9\left(-1\right)+3\left(-1\right)^{2}-\left(-1\right)^{2}
Consider the first equation. Insert the known values of variables into the equation.
f\left(-1\right)=9\left(-1\right)+3\left(-1\right)^{2}+\left(-1\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
f\left(-1\right)=-9+3\left(-1\right)^{2}+\left(-1\right)^{3}
Multiply 9 and -1 to get -9.
f\left(-1\right)=-9+3\times 1+\left(-1\right)^{3}
Calculate -1 to the power of 2 and get 1.
f\left(-1\right)=-9+3+\left(-1\right)^{3}
Multiply 3 and 1 to get 3.
f\left(-1\right)=-6+\left(-1\right)^{3}
Add -9 and 3 to get -6.
f\left(-1\right)=-6-1
Calculate -1 to the power of 3 and get -1.
f\left(-1\right)=-7
Subtract 1 from -6 to get -7.
f=\frac{-7}{-1}
Divide both sides by -1.
f=7
Fraction \frac{-7}{-1} can be simplified to 7 by removing the negative sign from both the numerator and the denominator.
f=7 x=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}