Solve for f, x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
f = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
f\left(-\frac{5}{3}\right)=-\left(-\frac{5}{3}\right)^{2}+3\left(-\frac{5}{3}\right)+5
Consider the first equation. Insert the known values of variables into the equation.
f\left(-\frac{5}{3}\right)=-\frac{25}{9}+3\left(-\frac{5}{3}\right)+5
Calculate -\frac{5}{3} to the power of 2 and get \frac{25}{9}.
f\left(-\frac{5}{3}\right)=-\frac{25}{9}-5+5
Multiply 3 and -\frac{5}{3} to get -5.
f\left(-\frac{5}{3}\right)=-\frac{70}{9}+5
Subtract 5 from -\frac{25}{9} to get -\frac{70}{9}.
f\left(-\frac{5}{3}\right)=-\frac{25}{9}
Add -\frac{70}{9} and 5 to get -\frac{25}{9}.
f=-\frac{25}{9}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}.
f=\frac{5}{3}
Multiply -\frac{25}{9} and -\frac{3}{5} to get \frac{5}{3}.
f=\frac{5}{3} x=-\frac{5}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}