Solve for f, F
f = \frac{84}{13} = 6\frac{6}{13} \approx 6.461538462
F = \frac{394800}{13} = 30369\frac{3}{13} \approx 30369.230769231
Share
Copied to clipboard
f=14\times \frac{6}{13}
Consider the first equation. Expand \frac{0.6}{1.3} by multiplying both numerator and the denominator by 10.
f=\frac{84}{13}
Multiply 14 and \frac{6}{13} to get \frac{84}{13}.
F=\frac{84}{13}\times 50\left(120-2\times 13\right)
Consider the second equation. Insert the known values of variables into the equation.
F=\frac{4200}{13}\left(120-2\times 13\right)
Multiply \frac{84}{13} and 50 to get \frac{4200}{13}.
F=\frac{4200}{13}\left(120-26\right)
Multiply 2 and 13 to get 26.
F=\frac{4200}{13}\times 94
Subtract 26 from 120 to get 94.
F=\frac{394800}{13}
Multiply \frac{4200}{13} and 94 to get \frac{394800}{13}.
f=\frac{84}{13} F=\frac{394800}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}